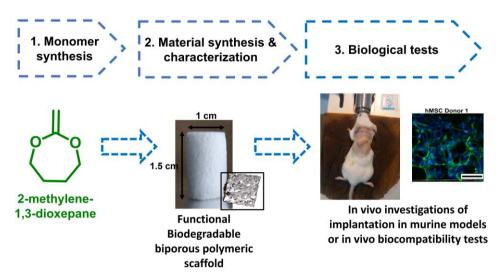
## Biporous Scaffolds from 2-Methylene-1,3-Dioxepane: a Smart Synthetic Alternative to Classical Poly(ε-Caprolactone) (Co)Polymer-Based Materials Meant for Tissue Engineering


Brian Barber Nunez<sup>a</sup>, Yohann Guillaneuf<sup>b</sup>, Idir Ouijda<sup>c</sup>, Dulce Papy<sup>c</sup>, Robert Owen<sup>d</sup>, Daniel Grande<sup>e</sup>, Benjamin Carbonnier<sup>a</sup>, Benjamin Le Droumaguet<sup>\*,a</sup>

- <sup>a</sup> Univ Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant. 94320. Thiais. France
  - <sup>b</sup> Aix Marseille Univ, Institut de Chimie Radicalaire, CNRS, UMR 7273, F-13397, Marseille, France <sup>c</sup> GlyCRRET, F-94010 Creteil, France
    - <sup>d</sup> Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
- e Current address: Universit'e de Strasbourg, CNRS, Institut Charles Sadron (ICS), UPR 22, 67034 Strasbourg cedex 2, France.
  - \* benjamin.le-droumaguet@cnrs.fr

Mots-clés: 2-Methylene-1,3-dioxepane, (Bio)Degradable doubly porous polymers, Water uptake, Functionalization, Biomaterials

## Résumé:

Polymeric porous scaffolds prepared from poly(ε-caprolactone) (PCL) have been so far extensively developed for the synthesis of biomaterials in tissue engineering applications. However, these polymeric materials suffer from a lack of functionalization routes. To address this limitation, our recent research aims at synthesizing crosslinked PCL-like scaffolds via ring-opening copolymerization of a cyclic ketene acetal, i.e. 2-methylene-1,3-dioxepane, in the presence of a crosslinker, divinyl adipate, and a radical initiator, namely azo-bisisobutyronitrile. A double porosity is obtained through the double porogen templating approach, using sieved and sintered NaCl particles and a solvent as porogenic agents. This versatile strategy allowed for the preparation of various PCL-like biporous scaffolds in which the porosity features can be tuned by controlling experimental parameters (type and volume fraction of the porogenic solvent, amount of crosslinking agent).<sup>[1]</sup> These novel scaffolds exhibit pH-dependent degradability, highwater uptake (up to 2300%), exceptional compressibility, and shape memory behaviour upon consecutive compression cycles. Moreover, these scaffolds can be further functionalized through incorporation of functional monomers in the polymerization feed.<sup>[2]</sup> Various as-prepared functionalized materials notably showed good biocompatibility toward a variety of cell lines.



Scheme 1. Synthesis and characterization of biporous materials arising from 2-methylene-1,3-dioxepane and consecutive biological in vivo and in vitro investigations.

## Références:

- [1]: B. Barber Nunez, Y. Guillaneuf, D. Grande, Benjamin Carbonnier, B. Le Droumaguet, *Polymer*, 2024, **308**, 127332.
- [2]: B. Barber Nunez, Benjamin Carbonnier, D. Grande, B. Le Droumaguet, *Reactive and Functional Polymers*, 2025, **214**, 106284.