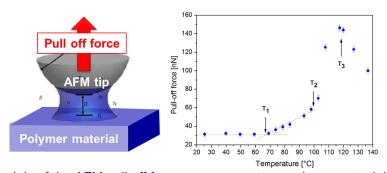
Temperature transition above Tg in amorphous polymer films


Adrien Delanoë ^a, David Siniscalco^a, Viktoriia Drebezghova^a, Pierre Nickmilder, ^b Philippe Leclère, ^b Guillaume Vignaud, ^c and Nicolas Delorme ^{a,*}

* Nicolas.delorme@univ-lemans.fr

Mots-clés: Polymer films, Atomic Force Microscopy, Adhesion, Glass transition, Dynamic

Résumé:

Aside from the well-known glass transition temperature (T_g), several additional relaxation processes have been identified in polymer materials corresponding to different dynamic processes. Among these, a transition located at a temperature above T_g was first detected and studied by Boyer^[1]. Initially highly criticized due to the techniques used to detect it and the lack of theoretical references, the existence of this transition is today confirmed by several works ^{[2],[3]}. However, methods for studying this transition remain scarce and quite difficult to implement, making it difficult to investigate its origin.

Principle of the AFM pull-off force measurement on polymer material

Here we present a new experimental approach based on Atomic Force Microscope (AFM) pull-off force measurements^[4], able to clearly detect the transition above T_g . By studying the influence of M_n , polymer nature and confinement effect, we confirm that, as predicted by Boyer and other, that this transition corresponds to a rubbery-viscous transition common to several amorphous polymers ^[4]. We believe that this transition has a very significant impact on many applications of polymer science, such as adhesion or stability, and must therefore be considered when investigating the thermomechanical properties of amorphous polymers.

Références:

- [1] R. F. Boyer, Rubber Chemistry and Technology, 1963, **36**, 1303.
- [2] S. Pawlus; K. Kunal; L. Hong; A. P. Sokolov, *Polymer*, 2008, **49**,2918.
- [3] L. Gong; X. Zhang; Y. Shi, European Polymer Journal, 2011, 47, 1931.
- [4] N. Delorme; M. S. Chebil; G. Vignaud; V. Le Houerou; J.-F. Bardeau; R. Busselez; A. Gibaud; Y. Grohens, *The European Physical Journal E*, 2015, **38**, 56.
- [5] D. Siniscalco; L. Pessoni; L. Billon; A. Boussonnière; A. -S. Castanet; J. -F. Bardeau; P. Nickmilder; P. Leclère; N. Delorme, *ACS Applied Polymer Materials*, 2023, **5**, 7358.

^a Institut des Molécules et Matériaux du Mans (IMMM) – UMR CNRS 6283 – Le Mans Universi-té, Avenue Olivier Messiaen, 72000 Le Mans, France

^b Laboratory for Physics of Nanomaterials and Energy (LPNE), Research Institute for Materials Science and Engineering, University of Mons (UMONS), 20 Place du Parc, B 7000, Mons, Belgium

^c Laboratoire d'Ing´enierie des Matériaux de Bretagne (LIMATB)– Université de Bretagne Sud, Rue Saint Maudé, 56321 Lorient, France